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Chapter 1

Mathematical prelude

For more than two thousand years some familiarity with mathemat-
ics has been regarded as an indispensable part of the intellectual
equipment of every cultured person.

(Richard Courant, 1941)

1.1 Introduction

In biological research there is a steadily increasing trend to describe functions
and mechanismsquantitativelyby applying ideas and concepts from physics
and physical chemistry. This tendency is found in large areas of biology, ex-
tending from ecology over the function of the integrated organism to processes
taking place at the cellular andmolecular level. This developmentwill doubtless
continue.
However, a quantitative treatment of any phenomenon in physics or physical

chemistry requires an adequate command of the mathematical tools that are
needed to formulate and solve the particular problem that is subject to such
close scrutiny. For that reason, mastery of certain elements of mathematical
analysis is an indispensable element in the arsenal of tools that are loaded into
the knapsack of the serious student of general physiology or cell biology.
The sections that follow in this chapter are not presented as a self-contained

mathematical text. The intention is to present a summary – shortin some places,
more detailed in others – of the mathematical concepts and techniques that are
used in this book. It is presumed that the reader is already familiar with these
concepts. Thus, a cursory reading of this chapter may have the effect of acting
as a reminder of items that are known but perhaps not immediately recalled
from memory.

1



2 1. Mathematical prelude

1.2 Basic concepts of differential calculus

1.2.1 Limits

A collection of numbers

a1;a2;a3;a4; . . .an;

that follow each other according to a given law is called asequenceof numbers.
If the number of elementsn increases without bound the sequence is aninfinite
sequence. The elements of the sequence are said toconvergeto a limit L if the
elements beyond that ofaµ behave in such a way that the difference

|L − an| for n > µ

is smaller than any arbitrarily small positive numberε. If the elementsan do
not pile up in this manner, the sequence is made up of elementsthatdiverge.
When the elements of a sequence are added they constitute aseries

Sn = a1 + a2 + a3 + a4 + · · ·an,
which may befiniteor infiniteaccording to whether the number of elementsn
is bounded or not. An infinite series may convergeto a definite valueSn when
n increases beyond the boundary. This valueS∞ = L is called thelimit of the
series. This is generally written as

Sn → L , for n → ∞, or lim
n→∞ Sn = L .

1.2.2 Functions

Let x andy represent two arbitrary quantities that are coupled together in such
a way that to each value ofx there exists a definite value ofy. We say then that
the quantityy is afunctionof the quantityx. Usually this is represented as

y = f (x), (1.2.1)

where x is called theindependent variableand y is called thedependent
variable∗.Of courseonecouldequallywell haveconsidered theinverse function

x = g(y), (1.2.2)

wherey is now the independent variable andx is the dependent variable. The
condition that the inverse functionx = g(y) is so well-behaved that there exists
in the intervala ≤ x ≤ b one and only one value ofx for a given value ofy, is

∗ To facilitate the readability of this text, mathematical and physical variable quantities are printed
in italics. Similarly, mathematical operators are printed in Roman type.
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that the functiony = f (x) is increasingor decreasingmonotonicallyin the same
domain. Thus, the functiony = x2 is monotonically decreasing in the region
−a ≤ x ≤ 0, and to every value ofy there corresponds only one valuex =
−√

y. In the region 0≤ x ≤ a the functiony = x2 increases monotonically,
and to every value ofy there corresponds likewise only one valuex = √

y.
With increasing values forx in the region−a ≤ x ≤ a the functiony = x2

both decreases monotonically as well as increasing, and for a given value of
y we have the corresponding valuesx = −√

y andx = √
y. A function that

suddenlyjumpsfrom one value to another is said to be adiscontinuous function.
Thus, the function

y = f (x) =
{
2 for x ≥ 1
1 for x < 1

is a discontinuous function forx = 1, since

f (1+ ε)− f (1− ε) = 1

no matter how small we make the positive quantityε. A continuous functionis,
roughly speaking, a function that does not do such things. Thus, the function

y = f (x) =
{
x2 for x ≥ 1
x for x ≤ 1

in continuous at the pointx = 1 since

f (1+ ε)− f (1− ε) = (1+ ε)2 − (1− ε) = 3ε + ε2 → 0 for ε → 0,

although the formula displays changes forx = 1.

1.2.3 The derivative

Consider the functiony = f (x) that is continuous in the rangea < x < b. If
the quantity, denoted thedifference quotient, for the functiony = f (x) at the
point x

f (x + h)− f (x)

h
, (1.2.3)

converges towards adefinite limitash approaches zero in an arbitrary manner
0, the value of this limit

lim
h→0

[
f (x + h)− f (x)

h

]
def≡ f ′(x), (1.2.4)
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is called thefirst derivativeof the functiony = f (x)∗. Another name forf ′(x)
is thedifferential quotientof f (x). We can illustrate this limiting process geo-
metrically as follows: Eq. (1.2.3) represents the value of the slope of a straight
line that is anchored at the curve pointP0 with coordinates (x, f (x)) andmakes
another section with the curve at the pointP1 at (x + h, f (x + h)). This line
is called asecantto the curve. When we leth decrease in an arbitrary manner,
the pointP1 approaches the pointP0 from either side according to the sign of
h, and whenh → 0 the slope of the secant attains a limiting value that is equal
to the slope of the line that, at the pointP0, has only one point in common with
the curvey = f (x), namely thetangentof the curve atP0, or

lim
P1→P0

(Slope of secant anchored atP0) = (Slope of tangent atP0)

always provided there is a tangent with a well-defined direction at the point
P0 on the curve. This occurs if the limit of the ratio (f (x + h)− f (x))/h
in Eq. (1.2.4) converges to the definite valuef ′(x) when h → 0. In many
physical applications involving the derivative it may useful to keep in mind this
geometrical representation off ′(x).
The expressiony′ = f ′(x) goes back to thework of J.-L. Lagrange†. Another

way of writing the derivativef ′(x) is

f ′(x)
def≡ dy

dx
, (1.2.5)

which was introduced by G.W. Leibniz (1646–1716)‡, has many practical ad-
vantages, and is almost always used in applied mathematics.
The quantity (dy/dx) is not a fraction in the usual sense but a compactsymbol

meaning that the functiony = f (x) has been subjected to the operation that is
defined by Eq. (1.2.4). To emphasize the character ofdy/dx as a mathematical
operation many peopleprefer to use the typographical convention

dy

dx
def≡ dy

dx
, (1.2.6)

to distract one’s thoughts from a fraction. This notation will be used in this
book.

∗ The symboldef≡ is used in this text to emphasize that it is a definition.
† J.-L. Lagrange (1736–1813) was a Professor atÉcole Polytechnique. He was one of the greatest
mathematicians of the eighteenth century, who made fundamental contributions to the devel-
opment of differential and integral calculus, calculus of variation, theory of numbers and to
mechanics (M´ecanique analytique) and astronomy.

‡ This is a remainder of the derivative being obtained from the difference quotient which he wrote
as

f (x + �x)− f (x)

�x
= �y

�x
, for �x → 0.
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As an illustration we consider the functiony = f (x) = x2. We have

(x + h)2 − x2

h
= (x2 + 2hx+ h2)− x2

h
= 2hx+ h2

h
= 2x + h.

Hence

lim
h→0

(x + h)2 − x2

h
= 2x.

Thus, the limit exists, giving

f ′(x) = dy

dx
= 2x.

Continuing this argument toy = f (x) = xn, wheren is any real number, one
gets

d

dx
(xn) = n xn−1.

Naturally the operations of Eq. (1.2.3) and Eq. (1.2.4) can be applied to the
function f ′(x). If the limit exists it is called thesecond derivativeof the function
f (x). The notation for this limit is

f ′′(x)
def≡ d

dx

(
dy

dx

)
def≡ d2y

dx2
. (1.2.7)

Some mathematicians have never become reconciled to Leibniz’s notation
and have instead replaced the operator d( )/dx by the symbol D to denote the
operation∗

D f (x)
def≡ lim

h→0

[
f (x + h)− f (x)

h

]
def≡ f ′(x).

The D notation will not be used in this text.
The requirement for the limit of Eq. (1.2.4) to exist is that the functionf (x)

is continuous. However, this condition is not sufficient, because a continuous
function may exhibit a sudden break at a pointx0. In this casef ′(x0 − ε) and
f ′(x0 + ε) both exist no matter how small we makeε, but they may differ
drastically from each other in value, leavingf ′(x) to have a discontinuity at the
point x0.

∗ This was introduced in 1808 by Brisson and gained a footing owing to the extensive use of the
operator D made by A.L. Cauchy (1789–1857).
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1.2.3.1 A few derived functions

Using the operations that are defined by Eq. (1.2.4) on the elementary mathe-
matical functions one obtains explicit expressions for the derivatives of the
functions in question. Below are a few important elementary examples∗

(a) If f (x) = A,whereA is a constant,f ′(x) = 0.
(b) If f (x) = Au(x), f ′(x) = Au′(x).
(c) If f (x) = u(x)+ v(x), f ′(x) = u′(x)+ v′(x).
(d) If f (x) = u(x) v(x), f ′(x) = u′(x) v(x)+ u(x) v′(x).

(e) If f (x) = u(x)

v(x)
, f ′(x) = u′(x) v(x)− u(x) v′(x)

v(x)2
.

(f) If f (x) = x, f ′(x) = 1.
(g) If f (x) = xn, f ′(x) = nxn−1.
(h) If f (x) = sinx, f ′(x) = cosx.
(i) If f (x) = cosx, f ′(x) = − sinx.
(j) If f (x) = tanx, f ′(x) = 1/ cos2 x.

1.2.4 Approximate value of the increment∆y

In physics many relations are described in terms of therate of change of a
quantity. This change may depend upon time, position in space, or both. With
hardly a single exception it is sufficient initially to express this change with an
approximate accuracy that may be improved later as occasion requires. In this
context, differential calculus is a very useful tool. One proceeds as follows. The
curve in Fig. 1.1 shows an arbitrary differentiable functiony = f (x). The line
AB denotes the tangent to the curve on the point (x, y) having a slope that is
equal to the value of the derivativef ′(x) taken at the point (x, y). Let x+ h
be a neighboring point tox that corresponds to assigning a finite increment
h = �x to the valuex of the independent variable. We denote the value of the
function at the neighboring pointx + h as f (x + h) = y+ �y, where�y is
the increment iny = f (x) due to the changeh in the argument. According to
Eq. (1.2.3) and Eq. (1.2.4), that defines the derivativef ′(x), the increment can
be written as

�y = f (x + h)− f (x) = f ′(x) h+ ε�x, (1.2.8)

or

y+ �y = f (x + �x) = f (x)+ f ′(x)�x + ε�x, (1.2.9)

∗ For more about hyperbolic functions, see Appendix I.
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Fig. 1.1. Approximationof the increment�yof a functiony = f (x) bya linear function.
The figure also illustrates the geometrical meaning of the differentials dy and dx.

whereε = ε(�x) depends on the magnitude of�x and approaches zero when
h = �x → 0.
We now regard the variablex as fixed and let the incrementh = �x vary in

an arbitrary manner. Equation (1.2.9) now states that the increment�y to the
valuey of f (x) at a given value ofx is made up of two terms:

(i) a term f ′(x) h = f ′(x)�x that is proportional to the incrementh = �x
with f ′(x) as the proportionality coefficient that is a constant at a fixed
value ofx, and

(ii) a correction termεh = ε�x,whichcanbemadeassmall aswewish relative
to h by making the incrementh = �x sufficiently small. Thus, the smaller
we make the interval in questionh = �x aroundx the more precisely will
the functionf (x + h), beinga functionofh, be representedby its linear part

f (x + h) ≈ f (x)+ f ′(x)h, (1.2.10)

where bothf (x) and f ′(x) are two fixed numbers for a given value ofx.
From a geometrical viewpoint this approximate description of the value
f (x + h) of the functiony = f (x) at the point(x, y) means thatthe curve
of f (x) is replacedby the tangent and that the expression for the increment
of the function

�y = � f = f (x + h)− f (x),

corresponding to the increment�x of the independent variable, can be
written approximately as

�y = � f ≈ f ′(x)�x, (1.2.11)

provided�x is sufficiently small to make the termε�x negligible relative
to the termf ′(x)�x.
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1.2.5 Differential

The approximate description of the increment�y by the linear partf ′(x)h =
f ′(x)�x can also be used to put the termdifferentialon a firmer logical basis.
The original meaning of differentials as infinitely small quantities – different
from zero – very soon turned out to have no precise meaning. One of the
founders of differential calculus G.W. Leibniz (1646–1716) tried, without suc-
cess, around 1680 to define the differential quotient as the ratio between two
infinitely small increments dy and dx that were considered just before both
quantities assumed the value zero. More than100 years passed before the
Bohemian priest B. Bolzano (in 1817) sharpened the definitions of such con-
cepts as limits, continuity, etc., and then described the derivative by thelimiting
process in Eq. (1.2.4). However, Leibniz’s notation has turned out to be themost
suitable for handling calculations in physics and chemistry. For that reason, it
is of value to attempt to give an unambiguous description of the identity

f ′(x)
def≡ dy

dx
,

in such a way that the expression dy/dx need not be regarded only as a symbol
for the limiting process

dy

dx
= lim

h→0

f (x + h)− f (x)

h
,

but can also be considered as a quotient between two actual, well-defined,
quantities.
Starting from the definition of the derivativef ′(x) as a limiting process, as

in Eq. (1.2.4), we then assign a fixed value to the independent variablex and
consider the incrementh = �x as the variable (see Fig. 1.1). The quantity
h = �x is then called thedifferentialof x, and is designated as dx. We then
definethe quantity

dy
def≡ f ′(x) dx, (1.2.12)

as thedifferentialdy of the functiony = f (x) corresponding to the differential
dx of the independent variable. Thus, by means of this definition the derivative
f ′(x) is regarded as the ratio between two quantities dy and dx, which can
have any value provided their ratio is constant and equal tof ′(x). Comparing
Eq. (1.2.9) with Eq. (1.2.10) shows that the differential dy is equal to the
linear portion of the increment�y that corresponds to the increment dx of the
independent variablex (compare Fig. 1.1).
The introduction of the differentials dy and dx due to S.-F. Lacroix (1765–

1843) and A.L. Cauchy (1789–1857) does not represent a new idea. But their
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merit is to make more precise the wording of “infinitesimal quantity”: these
quantities are now of finite magnitude, and not quantities “just differing from
zero”. Hence, when considering a particular problem, they may be chosen to
be small enough so that one can, with confidence, replace the increment�y of
the function with its differential dy and write

�y ≈ dy = f ′(x) dx =
(
dy

dx

)
dx, (1.2.13)

and

f (x + dx) ≈ f (x)+ f ′(x) dx = f (x)+
(
dy

dx

)
dx. (1.2.14)

The validity of the above approximation depends on the special character
of the physical situation in question. In general, theerror introduced will be
insignificant for the solution of the physical problem as long the infinitesimal
quantities introduced are smaller than the actual error of measurement that are
related to the physical situation.

1.2.5.1 The chain rule

One often finds that the dependent variabley is a function of the independent
variableu that again is a function of the independent variablex, e.g.

y = u3 and u = sinx.

This situation is described by saying thaty is afunction of a functionor thaty
is acompound functionof x. In general we write this as

y = f (x) = F(u) = F{u(x)}.
If both derivatives

dF

du
and

du

dx

exist it can be shown that

f ′(x) = F ′(u)u′(x),

or, in terms of Leibniz’s notation,

dy

dx
= dF

dx
= dF

du

du

dx
, (1.2.15)

which illustrates both the flexibility and suggestive strength of this notation.
It appears as if the symbols dy and dx are quantities that can be considered
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and manipulated as if they were real numerical quantities. In fact, they can.
According to Eq. (1.1.10) we have

dF = dF

du
du, and du = du

dx
dx,

so that

dF = dF

du

du

dx
dx,

which on division on both sides by dx becomes Eq. (1.2.15). In the above
example we have dy/du = 3u2 and du/dx = cosx. Hence

dy

dx
= dy

du

du

dx
= 3 sin2 x cosx.

For the functiony = sin3 αx we obtain dy/dx = 3α sin2 αx cosαx, since

d(sinαx)

dx
= d(sinαx)

d(αx)

d(αx)

dx
= α cosαx.

If y = sin
√
x = sinu, whereu = √

x = x1/2 we have

dy

dx
= d sinu

du

du

dx
= cos

√
x
d

dx
(
√
x) = cos

√
x

(
1

2

)
x− 1

2 = 1

2

cos
√
x√

x
.

1.2.5.2 The derivative of the inverse function

It has previously been stated that if a continuous functiony = f (x) is either
increasing or decreasing monotonically in an interval (saya ≤ x ≤ b) then
the inversefunction x = g(y) also exists as a single-valued function that is
continuous and monotonic in the same interval. If the functiony = f (x) is
differentiable in the interval, the function increases monotonically iff ′(x) > 0
in the interval and, correspondingly, can decrease monotonically iff ′(x) < 0.
Knowledge of the differentiability of a function in a given interval provides a
tool for deciding whether the function also possesses an unambiguous inverse
function as expressed in the following statement.
If the function y= f (x) is differentiable in the interval a< x < b and

f ′(x) >0 everywhere or f′(x) <0 everywhere, then the inverse function x=
g(y) also has a derivative x′ = g′(y) in the whole interval. The derivative of
the original function y= f (x) and that of the inverse function x= g(y) are for
the values of x and y belonging together connected by the following relation:

f ′(x) · g′(y) = 1, (1.2.16)
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or written in the form

dy

dx
= 1

(dx/dy)
. (1.2.17)

This is demonstrated by applying the definition for the derivative (Eq. (1.2.4))
on y = f (x) and its inverse functionx = g(y). For the functiony = f (x) we
have

f ′(x)= lim
�x→0

f (x + �x)− f (x)

�x
.

The numerator is written asf (x + �x)− f (x) = �y. As x = g(y) we can
express�x by means of the increment�y, since�x = g(y+ �y)− g(y).
Hence, the above difference quotient can also be written as

�y

g(y+ �y)− g(y)
= 1

[g(y+ �y)− g(y)]/�y
.

Since the two functionsf (x) andg(y) are continuous we have�y → 0 when
�x → 0, and vice versa. This implies that

f ′(x)= lim
�x→0

f (x + �x)− f (x)

�x
= lim

�y→0

1

[g(y+ �y)− g(y)]/�y
= 1

g′(y)
,

provided thatf ′(x) �= 0 andg′(y) �= 0 in the intervala ≤ x ≤ b.

1.3 Basic concepts of integral calculus

Integral calculus emerged from the need to determine areas of surfaces dif-
fering from those of rectangles and to find equations for curves where the
behavior of their tangents were known. The basic method was known to the
Greekmathematicians∗, for example in their attempts to find the area of a circle,
which was confined between then-sided regular inscribed and circumscribed
polygons, whose areas are known from Euclidian geometry. Asn increases, the
difference between the two areas becomes smaller. We canmake this difference
as small as we please by choosingn sufficiently large, and so the value of the
area can be estimated to any degree of accuracy that is required. This method
of exhaustion is essentially that of integral calculus.

∗ Itwasknown inparticular byArchimedes (287–212bc),who, inaddition tohisgreat contributions
tomathematics, is also regarded as the founder of the laws of equilibrium in rigid and fluid bodies.
He was also an imaginative inventor.
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1.3.1 Definite and indefinite integral

Let y = f (x) be a function represented by a finite, positive value in the interval
a ≤ x ≤ b. Thedefinite integralof the functiony= f (x) from x=a to x=b
is defined by the following operation. The intervala ≤ x ≤ b is divided inn
subintervals

�x1, �x2, . . . , �xi , . . . , �xn.

Let f (xi ) be the value of the function somewhere in the subinterval�xi . One
then introduces the sum

Sn = f (x1)�x1 + f (x2)�x2 + · · · + f (xi )�xi + · · · + f (xn)�xn, (1.3.1)

or

Sn =
i=n∑
i=1

f (xi )�xi =
i=n∑
i=1

�Ai , (1.3.2)

where
∑
stands for “sum of elements of the form. . . ”, in this case

f (xi )�xi = �Ai ,

where�Ai is the area of the rectangle with sidesf (xi ) and�xi .
If this sumSn assumes a definite value,the limit of Sn, when all intervals�xi

approach zero as the number of intervalsn → ∞, the function f (x) is said to
be integrablein the interval betweenx = a andx = b. The value of this limit
for Sn is denoted thedefinite integralof y = f (x) from x = a to x = b. The
symbolism that reflects this operation is

lim
n→∞
�xi→0

i=n∑
i=1

f (xi )�xi
def≡

∫ b

a
f (x) dx. (1.3.3)

The symbol
∫
–anelongatedS–was introducedby Leibniz∗ tomakeanasso-

ciation to the “sum of infinitely large number of infinitely small subelements”,
and the symbol has retained its value of convenience ever since and is called
theintegral sign. We denotex = a as thelower limitof the definite integral and
x = bas theupper limit. The arithmetic definition above also holds ifa > b, as
the only change that arises is that the differences�xi = f (xi+1)− f (xi ) now
become negative when the interval is traversed froma to b. This suggests the
relation ∫ b

a
f (x) dx= −

∫ a

b
f (x) dx, (1.3.4)

∗ In a manuscript dated 29th October 1675.
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Fig. 1.2. Illustration of the definite integral as an area.

and the definition

∫ a

a
f (x) dx=0. (1.3.5)

From a geometric point of view, Eq. (1.3.1) gives the value of the area
between the curvey = f (x) and thex-axis that is delimited by the linesx = a
andx = b. An example of such an areaAab is shown in Fig. 1.2 together with
the adjacent areaAbc that is delimited by the curvey = f (x) and by the lines
x = b andx = c. Denoting the total area between the linesx = a andx = c as
Aac, we have:Aab + Abc = Aac, or

∫ b

a
f (x) dx +

∫ c

b
f (x) dx =

∫ c

a
f (x) dx. (1.3.6)

On account of Eq. (1.3.4) and Eq. (1.3.5) this relation will hold for any mutual
positions the three pointsa, b andcmay assume.
In Fig. 1.2 it is assumed that the functionf (x) is positive in the whole range

considered. However, the integral that is defined byEq. (1.3.1) as the limit of the
sumof elementsf (xi )�xi is independent of such an assumption. Iff (x) < 0 in
part of the range froma to b it only results in making the summation elements
in question negative, thereby assigning a negative value to the area where the
curve of f (x) is locatedbelowthex-axis. Thus, the total area that is enveloped
by an arbitrary curvey = f (x), will in general comprise positive as well as
negative areas.
Let y = f (t) represent a function of the independent variable that, for reasons

of convenience, we shall denote byt . Next we consider the integral of this
function taken from a fixed pointt = a to another pointt = x, which we allow
to vary on thet-axis. The value of this integral is then determined by the value
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that is assigned tox. Thus, the integral will be a functionF(x) of its upper limit
t = x, namely

F(x) =
∫ x

a
f (t) dt. (1.3.7)

The functionF(x) is the area between the curvey = f (t) and thet-axis that
is delimited by the fixed linet = a and the linet = x that may vary as we
please. For that reason an integralF(x) with a variable upper limit is called
an indefinite integral. The condition for the existence of an indefinite integral
F(x) is that the functiony = f (t) is continuous.

1.3.2 The fundamental law

The fundamental law of integral and differential calculus∗ states:the derivative
of the indefinite integral F(x) of the function y= f (t)with respect to x is equal
to the value of f(t) for t = x, namely

F ′(x) = dF

dx
= f (x), (1.3.8)

that isthe process of integration that leads from the function f(x) to F(x) can
be reversed by taking the derivative of the function F(x) with respect to x.
This important theorem can be demonstrated by applying the limiting proce-

dure Eq. (1.2.4) to the difference quotient (Eq. (1.2.3)) of the indefinite integral,
i.e.

F ′(x) = lim
h→0

[
F(x + h)− F(x)

h

]
.

From Eq. (1.3.4) and Eq. (1.3.6) it follows that the denominator can be written
as

F(x + h)− F(x) =
∫ x+h

a
f (t) dt −

∫ x

a
f (t) dt

=
∫ a

x
f (t) dt +

∫ x+h

a
f (t) dt

=
∫ x+h

x
f (t) dt.

The right-hand side of Fig. 1.3 can be visualized as the area between the
curvey = f (t) and thet-axis that is delimited by the linest = x andt = x + h.
Furthermore it is seen that this area is contained between the two rectangles of

∗ This theorem was discovered around 1670 by Isaac Newton (1642–1727) and by G.W. Leibniz
(1646–1716), independently of each other.
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Fig. 1.3. To the derivation of the fundamental law of integral and differential calculus.

areash mandh M, wherem andM are the smallest and largest value respec-
tively of y = f (t) in the intervalx ≤ t ≤ x + h. Thus, we have

m≤ F(x + h)− F(x)

h
≤ M.

As the functiony = f (t) is continuous bothm and M will approach the
value f (x) whenh → 0. At the same time the difference quotient (f (x+ h)−
f (x))/h will approachF ′(x). Thus, the above limit becomes

F ′(x)= lim
h→0

[
F(x + h)− F(x)

h

]
= f (x).

This version of the derivation of Eq. (1.18) is due to Cauchy∗ (1823).
Thus, to obtain anindefinite integralor aprimitive functionof the function

y = f (x) one has to find a functionF(x), whose derivative is equal tof (x),
i.e. find a function with the property

F ′(x) = f (x). (1.3.9)

1.3.3 Evaluation of a definite integral

Having at our disposaloneprimitive functionF(x) – an indefinite integral –
that satisfies Eq. (1.3.8), we can construct any number of primitive functions,
such as the function

G(x) = F(x)+ C, (1.3.10)

whereC is a constant that will also satisfy Eq. (1.3.8), because the derivative
of the functiony = C is equal to zero. This property leads to an important rule

∗ Augustin LouisCauchy (1789–1857)was one of the greatestmathematicians. Hewas the founder
of the modern theory of functions of complex variables, and was responsible for further devel-
opment of the theory of differential equations, difference equations and infinite series.
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for finding the value of a definite integral of the functionf (x) taken between
the limitsa andb, if a primitive functionG(x) of f (x) is known.
Consider the primitive function

F(x) =
∫ x

a
f (t) dt,

of the functiony = f (x). Equation (1.3.10) can then be written as

G(x) =
∫ x

a
f (t) dt + C. (1.3.11)

This expression is alsovalid for x = a, namely

G(a) =
∫ a

a
f (t) dt + C.

But according to Eq. (1.3.5) we have
∫ a

a
f (t) dt = 0

and hence

G(a) =
∫ a

a
f (t) dt + C = 0+ C.

InsertingC = G(a) in Eq. (1.3.11) and puttingx = b gives

G(b) =
∫ b

a
f (t) dt + G(a),

or
∫ b

a
f (t) dt = G(b)− G(a), (1.3.12)

nomatter which of themany possible forms forG(x) onemay choose to use.We
then have the following important result:to calculate the value of the definite
integral

∫ b

a
f (x) dx,

we have only to find a function G(x) with the property G′(x) = f (x) and then
form the difference G(b)− G(a).
To simplify the notation it has been found to be convenient to remove the

limits from the integral sign in Eq. (1.3.11) and modify the graphics for the
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indefinite integral to

G(x) =
∫

f (x) dx + C, (1.3.13)

where
∫ · · ·dxmeans: finda functionF(x)with thepropertyF ′(x) = f (x), and

have the additive constantC in mind. Sometimes it may be useful to remember
the above formula in this way

G(x) =
∫ (

dF

dx

)
dx + C = F(x)+ C, (1.3.14)

in particular in those cases where it is almost directly obvious that the function
f (x) can be written as the derivative of a functionF(x). The indefinite integral
on the form

∫
dx sometimes leads to difficulties in understanding until one re-

alizes that the integrand in this case isf (x) = 1, which again is the derivative
of the functionF(x) = x. Hence we have:

∫
dx + C = x + C.

1.3.4 The mean value theorem

There are several ways for estimating the value of a definite integral. We shall
consider the simplest. Lety = f (x) represent a continuous non-negative func-
tion – either positive or zero – in the intervala ≤ x ≤ b, i.e. f (x) ≥ 0. For the
definite integral it holds that

∫ b

a
f (x) dx = lim

n→∞
�xi→0

i=n∑
i=1

f (xi )�xi ≥ 0,

as the sum contains only positive elements. LetM denote a number such that
M ≥ f (x) for every value ofx in the intervala ≤ x ≤ b. Furthermore, letm
denoteanothernumbersuch thatm≤ f (x) for everyx in the intervala ≤ x ≤ b.
Hence we have ∫ b

a
mdx ≤

∫ b

a
f (x) dx ≤

∫ b

a
M dx.

This double inequality is illustrated geometrically in Fig. 1.4.
But we have∫ b

a
mdx=m

∫ b

a
dx=m(b− a) , and also M

∫ b

a
dx = M(b− a),

and hence

m(b− a) ≤
∫ b

a
f (x) dx ≤ M(b− a).
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Fig. 1.4. Illustration of the mean value theorem for the definite integral.

Therefore, the value of the definite integral canbe represented as the product
of (b− a) and some numberµ that is located betweenm andM :

∫ b

a
f (x) dx = µ(b− a), m≤ µ ≤ M, (1.3.15)

wherewe can regardµ as themean valueof f (x) in the intervala ≤ x ≤ b. The
function y = f (x) is continuous in the interval considered, and will therefore
assume all values between the largest and smallest value off (x) in the interval.
Therefore, we can putµ = f (ξ ) whereξ is located somewhere in the interval.
The last expression can therefore also be written as

∫ b

a
f (x) dx = (b− a) f (ξ ), a ≤ ξ ≤ b. (1.3.16)

This formula is called themean value theorem of the integral calculus.

1.4 The natural logarithm

1.4.1 Definition of the natural logarithm

After this recapitulation of the fundamentals of the integral calculusweconsider
the function

y = f (x) = xn.

If n is different from−1 there exists an indefinite integral

G(x) =
∫
xn dx = 1

n+ 1
xn+1 + C, (1.4.1)

sinceG′(x)= xn. If n = −1, the function assumes the form

f (x) = 1

x
= x−1.
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Fig. 1.5. Illustration of the geometric meaning of the natural logarithmy = ln x as an
area.

The right-hand side of Eq. (1.4.1) then becomes indeterminate since 1/

(n+ 1)= 1/(−1+ 1)= 1/0. Thus, in this case the integral off (x) = 1/x can-
not be expressed by Eq. (1.4.1). It turns out to be impossible to find an indefinite
integral of the functiony = 1/x that is expressed in terms of elementary func-
tions, i.e. polynomials, fractional rational functions (the ratio between twopoly-
nomials)oralgebraic functions (e.g. thesquare rootofapolynomial).Becauseof
the frequent occurrence of the integral

∫
dx/x, mathematicians found it conve-

nient todefineanewfunctionbymeansof this integral. This function is called the
natural logarithmand is denoted as lnx. This function isdefinedby the integral

ln x =
∫ x

1

1

t
dt, (1.4.2)

i.e. as the area between the rectangular hyperbolay = 1/t and thex-axis that
is delimited between the linet = 1 and the linet = x (Fig. 1.5). The variablex
can be any positive number, butx = 0 is excluded because the integral diverges
as the integrandy = 1/t becomes infinite whenx → 0.

1.4.2 Elementary properties of the logarithm

The functiony = ln x is useful for several reasons. The first follows from the
fundamental theorem Eq. (1.3.8). We have

f ′(x) = d lnx

dx
= 1

x
. (1.4.3)

Thus, thederivative ofy = ln x is alwayspositive, but it decreases for increasing
values ofx. In accordance with this we see that the area under the rectangular
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Fig. 1.6. The course of the functiony = ln x. The numberx = e satisfies the relation
ln e= 1.

hyperbolay = 1/x taken between the two lines atx and x + �x decreases
monotonically with increasing values ofx. The course of the functiony = ln x
is illustrated in Fig. 1.6. Below we shall recapitulate the three basic properties
of the logarithmic function.

1.4.2.1 Logarithm of a product

The main property of the logarithmic function is given by the formula

lna+ lnb = ln(ab). (1.4.4)

To demonstrate this theorem we consider the functionF(x) = ln x together
with another function

G(x) = ln(ax) = lnw =
∫ w

1

1

t
dt, (1.4.5)

wherew = ax. Taking the derivative ofG(x) with respect tox yields (see
Eq. (1.2.15))

G′(x) = d lnw

dw

dw

dx
= 1

w

d(ax)

dx
= 1

ax
a = 1

x
.

We also have

F ′(x) = 1

x
.

The two functionsF(x) andG(x) have exactly the same derivative and, conse-
quently, can only differ from each other by a constant number. Thus,

G(x) = F(x)+ C,




